Towards Sustainable Dynamic Traffic Management
Introduction

- Optimization of a road transport network
- Need for optimization multiple objectives
 - Accessibility – external effects / sustainability
- DTM – measures available
 - Optimization – expanding
 - Local – network
- Optimization at strategic level
 - Use of DTM measures to affect supply
DTM strategies
Externalities as objectives

- Dynamic Traffic Management
 - Traditionally focus on:
 - Local level
 - Efficiency
 - Predefined strategies
 - Route choice effects rarely addressed
 - Identified as measure for externalities
 - Local: level of service
 - Network: influencing route choice
 - Ideally selection DTM strategy
 - Network level
 - Several network performance measures
 - All possible strategies
 - Behavioral effects

- Question
 - Suitable approach
 - Insights in interaction between objectives
 - Insights in effective strategies
Approach

- **Multi-objective**
 - Incorporation of external effects
 - Road safety
 - Air quality
 - Climate
 - Noise

- **Dynamic Traffic Management**
 - As measure
 - Focus on supply and DTM strategies

- **Solution approach**
 - Bi-level optimization problem
 - Upper level: joined road authorities
 - Lower level: road users
 - Using DTA model for lower level
 - Pareto optimal set provides information for decision making process
 - Heuristics needed, computational expensive
General Framework

Modeling Framework and solution approach

- ARTEMIS emission model
- RMV or AR-INTERIM-CM noise model
- Accident risk based model

Evolutionary Multi Objective Algorithms
- NSGAII – SPEA2+
- RSM accelerated

OmniTRANS-Streamline DTA model
- RT version – using controls

Minimization externalities: congestion, climate, noise, air quality and traffic safety

Dynamic User Equilibrium problem

Traffic dynamics
- Flows, speeds

DTM measures

Supply – link characteristics
Pruning and ranking

- Information contained by Pareto optimal set
 - Interaction objectives
 - Lower and upper bound
 - Trade-offs and sensitivity
 - Mapping solution and objective space
- Pruning
 - Convex hull filter
 - PIT filter
 - Clustering filter
- Ranking
 - Weighted Sum Method
 - Weighted Product Method
 - Analytical Hierarchy Process
 - Weighted Average Rank
 - ELECTRE III
- Cost Benefit Analysis
Case Almelo

9 measures
6 time intervals
6.36x10^{45} possible solutions
15 minutes to solve DUE
100 iterations
250 solutions archive size
25250 assessed solutions
Pareto optimal sets
Some findings

- AR-INTERIM-CM for noise and ARTEMIS for emissions are suitable externality models for DTA
- Gap in knowledge on modeling traffic safety
- Using RSM methods can accelerate search considerably
- Solving MO NDP provides a lot of information
- Not one single solution optimal for more than one objective
- Efficiency aligned with emissions substances but opposed to noise and traffic safety
- General strategy complex to determine, but metering of traffic can be an interesting strategy for many externalities
Journal publications

- Wismans, L. J. J., E.C. van Berkum & M.C.J. Bliemer (2010). Wisselwerking tussen bereikbaarheid en externe effecten bij de optimalisatie van DVM maatregelen in verkeersnetwerken [Interaction between accessibility and external effects when optimizing DTM measures on network level (in Dutch)]. Tijdschrift Vervoerswetenschap, (ISSN 0040-7623), 46(2), 44-54
Books or bookchapters

Peer reviewed conference proceedings

Thank you for your attention

Luc Wismans
Goudappel Coffeng / University of Twente

E: lwismans@goudappel.nl
E: l.j.j.wismans@ctw.utwente.nl
T: +31570666222
M: +31622232508